0

Full Content is available to subscribers

Subscribe/Learn More  >

Mathematical Modelling of Magneto-Hydrodynamic Dampers With Time-Varying Fluid Properties

[+] Author Affiliations
Mario F. Letelier

University of Santiago of Chile

Dennis A. Siginer

Wichita State University

Jean-Paul Rouliez, Omar F. Corral

Air Force of Chile

Paper No. IMECE2005-81172, pp. 913-918; 6 pages
doi:10.1115/IMECE2005-81172
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The fluid dynamics of dampers is investigated for the case where the damping fluid flows through passages in which a magnetic field is applied. This is a specific case of a new and promising field of applications that has emerged through the design of devices that take advantage of some properties of the so-called electrorheological fluids and magnetorheological fluids (ERF and MRF). These fluids are created when a base fluid is seed with very small dielectric or iron particles, so that it reacts to electric or magnetic fields by developing some non-Newtonian characteristics, most prominently a yield stress, viscosity change, and also viscoelasticity. These fluid properties can be controlled through control of the electric or magnetic fields’ strength. In this paper, a typical damping load is modeled and related to the required flow of a MRF inside the damper. To this end the fluid is modeled as a Bingham fluid with time-varying yield-stress. The analysis here developed makes it possible to determine the magnetic field variation necessary in order to achieve a specific displacement of the damper’s piston. The flow equations are analytically solved for any time-history of the dimensionless fluid’s yield-stress. Main results are some simplified relationships that correlate damping load and magnetic field time-variations. These results aim at providing analytical tools that may facilitate dampers’ design.

Copyright © 2005 by ASME
Topics: Fluids , Dampers , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In