Full Content is available to subscribers

Subscribe/Learn More  >

Flow Induced Dynamics of a Pinned Droplet on the Surface of a Channel

[+] Author Affiliations
Amirreza Golpaygan, Nasser Ashgriz

University of Toronto

Paper No. IMECE2005-81757, pp. 835-842; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Dynamic behavior of a droplet adhering to the surface of a channel has been modeled under the influence of surrounding fluid. The numerical solution is based on solving Navier-Stokes equations for Newtonian liquids. The study includes the effect of interfacial forces with constant surface tension, also effect of adhesion between the wall and droplet accounted by implementing contact angle at the wall. The Volume-Of-Fluid method is used to numerically determine the deformation of free surface. Droplet deformation and final shapes have been predicted. A reduction in the surface tension allows the droplet to deform much easier. However, an increase in the fluid viscosity, although increases the shear force on the droplet, may not result in the deformation at high surface tension. It is shown that deformation of droplet significantly influences structure of channel flow. Effects of liquid droplet and channel fluid properties, namely density and viscosity, inlet velocity, surface tension and channel geometry on dynamics of the problem have been studied. Two different outcomes have been considered: the first one droplet with equilibrium shape and the other one when breakup of the droplet occurs. The border line between the disintegration region and equilibrium region is determined for different droplet surface tensions.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In