Full Content is available to subscribers

Subscribe/Learn More  >

Bounds on Two-Phase Flow: Part II — Void Fraction in Circular Pipes

[+] Author Affiliations
M. M. Awad, Y. S. Muzychka

Memorial University of Newfoundland

Paper No. IMECE2005-81543, pp. 823-833; 11 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Theoretical and empirical models for the gas void fraction (α) are reviewed. Simple rules are developed for obtaining rational bounds for the void fraction in two-phase flow. The lower bound is based on the separate cylinders formulation for turbulent-turbulent flow that uses the Blasius equation to predict the Fanning friction factor. The upper bound is based on the Butterworth relationship that represents well the Lockhart-Martinelli correlation. These two bounds are reversed in the case of liquid fraction (1−α). The bounds models are verified using published experimental data of void fraction versus mass quality at constant mass flow rate. The published data include different working fluids such as R-12 and R-22 at different pipe diameters, different pressures, and different mass flow rates. It is shown that the published data can be well bounded for a wide range of mass qualities, pipe diameters, pressures and mass flow rates. Further comparisons are made using the published experimental data of void fraction (α) and liquid fraction (1−α) versus the Lockhart-Martinelli parameter (X), for different working fluids such as R-12, R-22 and air-water mixtures.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In