Full Content is available to subscribers

Subscribe/Learn More  >

Bounds on Two-Phase Flow: Part I — Frictional Pressure Gradient in Circular Pipes

[+] Author Affiliations
M. M. Awad, Y. S. Muzychka

Memorial University of Newfoundland

Paper No. IMECE2005-81493, pp. 813-821; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient. Both the lower and upper bounds are based on the separate cylinders formulation. The lower bound is based on turbulent-turbulent flow that uses the Blasius equation to represent the Fanning friction factor. The upper bound is based on an equation that represents well the Lockhart-Martinelli correlation for turbulent-turbulent flow. The model is verified using published experimental data of two-phase frictional pressure gradient versus mass flux at constant mass quality. The published data include different working fluids such as R-12 and R-22 at different mass qualities, different pipe diameters, and different saturation temperatures. It is shown that the published data can be well bounded for a wide range of mass fluxes, mass qualities, pipe diameters and saturation temperatures. The bounds models are also presented in a dimensionless form as two-phase frictional multiplier (φl and φg ) versus Lockhart-Martinelli parameter (X) for different working fluids such as R-12, R-22, air-oil and air-water mixtures.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In