Full Content is available to subscribers

Subscribe/Learn More  >

Chaotic Mixing of Highly Viscous Liquids With Rectangular or Elliptical Rotors

[+] Author Affiliations
M. Erol Ulucakli

Lafayette College

Paper No. IMECE2005-81036, pp. 559-568; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The objective of this research is to experimentally investigate various mixing regions in a two-dimensional Stokes flow driven by a rectangular or elliptical rotor. Flow occurs in a rectangular cell filled with a very viscous fluid. The Reynolds number based on rotor size is in the order of 0.5. The flow is time-periodic and can be analyzed, both theoretically and experimentally, by considering the Poincare map that maps the position of a fluid particle to its position one period later. The mixing regions of the flow are determined, theoretically, by the fixed points of this map, either hyperbolic or degenerate, and their stable and unstable manifolds. Experimentally, the mixing regions are visualized by releasing a blob of a passive dye at one of these fixed points: as the flow evolves, the blob stretches to form a streak line that lies on the unstable manifold of the fixed point.

Copyright © 2005 by ASME
Topics: Rotors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In