0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotating Instability in a Centrifugal Pump Impeller

[+] Author Affiliations
Giorgio Pavesi, Guido Ardizzon, Giovanna Cavazzini

University of Padova

Paper No. IMECE2005-79937, pp. 67-75; 9 pages
doi:10.1115/IMECE2005-79937
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4219-3 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

The objective of the study was the experimental and computational investigation of the unsteady flow in the centrifugal pumps. This paper analysed the effect of the vaneless stator interference on the exit flow field of a radial pump operated in the DIM facility. High-response pressure transducers were used to determine unsteady pressure field at three planes at the pump and at diffuser inflows. The experimental data showed that unsteady pressure disturbances modes change when the flow was reduced. Detailed analysis showed that disturbances occur at distinct frequencies and that these rotated in the circumferential direction. Comparison of the pressure signals measured at two circumferential locations on the casing confirmed the characteristic frequency pattern to be a so called “rotating instability”. This unsteady phenomenon was highlighted both at design flow rate and at low flow rates. The azimuthal distributions exhibited significant nonuniformities. The amplitude of this non-uniformity was sensitive to the flow rate. A simple model showed that, contrary to the common belief, the transport of the vane wake and secondary flows across the rotor was not enough to explain the magnitude of the variations. In this paper numerical investigations of the unsteady three-dimensional flow through the pump stage were also presented. Turbulence was modelled both by the k-ω transport equations model, and Reynolds Stress Model based on the ω-equation. The effects of the tip leakage flow were considered by meshing the tip clearance between rotor blade and casing. Results showed the jet-wake flow pattern induced an unstable vortex, which influenced flow discharging from the adjacent passage and destabilised jet-wake flow in the passage. Both calculations and measurements detected the periodic fluctuations at impeller discharge which were found to be coherent from blade to blade and possessed a rich harmonic content.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In