0

Full Content is available to subscribers

Subscribe/Learn More  >

Life Cycle Product Design (at “Factor 10” Level): A Case Study Involving Innovative Mechanical Design of a Remote Area Ground Water Pumping System

[+] Author Affiliations
W. John Dartnall, Stephen Johnston

University of Technology-Sydney

Paper No. IMECE2005-82053, pp. 451-461; 11 pages
doi:10.1115/IMECE2005-82053
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Energy Conversion and Resources
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4218-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

For humanity to be able to meet its needs without compromising the ability of future generations to meet their own, we must create a sustainable and customised service economy. For all the people of the world to be able to share in this goal, including both marginal operators in economically developed countries and most farmers in currently less economically developed countries, we need to increase resource productivity by a factor of 10. This paper describes a conceptual design process in which the designer is looking to achieve this factor 10 improvement at a system design level. Order of magnitude upgrading, on the performance of existing products, calls for an innovative approach to the design process. We outline a methodology, “Trend-Morph-PDS”, and show in a case study how it has been applied to the development of a ground-water pumping system. This type of system is in demand in geographically remote areas, where low well yield rates are typical, and rather complicated wind or solar pumps are commonly used for these “low-yield-well pumps ”. The large number of products on the market demonstrates a wide and often conflicting range of trends in terms of design/development: long life/short life; high efficiency/low efficiency; problematic maintenance; absence of product range rationalisation. There is, however, a general trend towards replacement of mechanical with electrical-electronic systems. We argue that it would be possible to replace the currently dominant types of electrically driven submersible pump with a well designed mechanical system that has approximately twice the efficiency of its competitors and five times the design life. We recognise the commercial importance of the initial system cost, and we see no reason why our system should cost more than those of our existing competitors. Our case study indicates that factor 10 improvement in resource productivity is achievable in this application.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In