Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of High-Temperature Air Direct-Ignition of Pulverized Coal

[+] Author Affiliations
Z. Z. Kang, B. M. Sun, Y. H. Guo, W. Zhang, H. Q. Wei

North China Electric Power University

Paper No. IMECE2005-80672, pp. 285-287; 3 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Energy Conversion and Resources
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4218-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In