0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Validation of a Reduced Test Matrix for the Autoignition of Gas Turbine Fuel Blends

[+] Author Affiliations
Jaap de Vries, Eric L. Petersen

University of Central Florida

Paper No. IMECE2005-80040, pp. 209-219; 11 pages
doi:10.1115/IMECE2005-80040
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Energy Conversion and Resources
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4218-5 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Changes in fuel composition for both aero-engine as well as power generation applications is a topic of concern since fuel variability can have a great impact on the reliability and performance of the burner design. Autoignition experiments for a wide range of likely fuel blends containing CH4 mixed with combinations of C2 H6 , C3 H8 , C4 H10 , C5 H12 , and H2 are planned in the authors’ shock-tube laboratory. However, testing every possible fuel blend and interaction is not feasible within a reasonable time and cost. To predict the surface response over the complete mixture domain, a special experimental design has been developed reducing the amount of ‘trials’ needed significantly from 243 to only 41 using the Box-Behnkin factorial design methodology. Kinetics modeling was used to obtain numerical results for this matrix of fuel blends when applied to autoignition at a temperature of 800 K and pressure of 17 atm. A further attempt was made to reduce the 41-test matrix to a 21-test matrix. This was done using special mixture experimental techniques, and the kinetics model was used to compare the smaller matrix to the expected results of the larger one. The new 21-Test matrix produced a numerical correlation that agreed well with the results from the 41-test matrix, indicating that the smaller matrix will provide the same autoignition information as the larger one with acceptable precision.

Copyright © 2005 by ASME
Topics: Fuels , Design , Gas turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In