Full Content is available to subscribers

Subscribe/Learn More  >

Laser-Induced Chemical Vapor Deposition on Moving Glass Rods

[+] Author Affiliations
King Hong Kwok, Wilson K. S. Chiu

University of Connecticut, Storrs, CT

Paper No. HT2003-47446, pp. 269-274; 6 pages
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 3
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3695-9 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME


The feasibility of using pyrolytic Laser-Induced Chemical Vapor Deposition (LCVD) to deposit carbon coatings on moving fused quartz rods have been investigated in this study. This LCVD system uses a CO2 laser to locally heat substrates in open air to create a hot spot. Pyrolysis of hydrocarbon species occurs and subsequently deposits a layer of carbon film onto the substrate surface. The results of this study indicate that the deposition rate of carbon film increases exponentially within the range of laser power, while an increase in traverse velocity of the substrate will also increase the deposition rate until a maximum deposition rate is reached, and further increases in the traverse velocity will decrease the deposition rate. We suspect that this optimal deposition rate is caused by substrate motion, which affects the substrate surface temperature, and consequently the effective surface area available for film deposition.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In