0

Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Model for Czochralski Melt Growth of Optical Crystals

[+] Author Affiliations
S. P. Song, B. Q. Li, K. G. Lynn

Washington State University, Pullman, WA

Paper No. HT2003-47403, pp. 229-237; 9 pages
doi:10.1115/HT2003-47403
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 3
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3695-9 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

This article presents the phenomena of melt flow, heat transfer, and solidification in Czochralski (CZ) melt growth processes of optical crystals, with emphasis on the effect of internal radiative heat transfer on the temperature distributions in oxide melt and crystal, melt convection, and melt-crystal interface shape. An integrated numerical model has been developed for simulating the physical phenomena in generic CZ furnaces, which includes the models for electromagnetic induction in crucible, surface exchange radiation in furnace, internal radiation in semi-transparent oxide melt and crystal, Marangoni convection in the melt, and solidification. Each developed model compares well with available analytical solutions. Numerical simulations were carried out for the prediction of fluid flow and heat transfer in furnaces. The simulation results show that the variation in optical properties of melt and crystal strongly impact their temperature distributions. It also affects the melt flow profile and intensity. The interface shape becomes more deeply convex toward the melt, as the optical thickness of the melt increases. However, the optical thickness of the crystal exhibits a minor impact on the interface shape. The results also show that the natural convection is dominated in the melt and the Marangoni flow enforces the natural convection.

Copyright © 2003 by ASME
Topics: Crystals

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In