0

Full Content is available to subscribers

Subscribe/Learn More  >

Two Dimensional Modeling of Laser Cladding With Droplet Injection

[+] Author Affiliations
L. Han, J. Choi

University of Missouri at Rolla, Rolla, MO

Paper No. HT2003-47295, pp. 183-188; 6 pages
doi:10.1115/HT2003-47295
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 3
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3695-9 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

Directed Metal/Material Deposition (DMD) process is one of additive manufacturing processes based on laser cladding process. A full understanding of laser cladding process is a must to make the DMD process consistent and robust. A two dimensional mathematical model of laser cladding was developed to understand the influence of fluid flow to the mixing, dilution, and deposition dimension, incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool driven by thermal capillary convection and energy balance at liquid-vapor and solid-liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In