0

Full Content is available to subscribers

Subscribe/Learn More  >

The Theoretical Flow Ripple of an External Gear Pump

[+] Author Affiliations
Noah D. Manring, Suresh D. Kasaragadda

University of Missouri at Columbia, Columbia, MO

Paper No. IMECE2002-39327, pp. 19-27; 9 pages
doi:10.1115/IMECE2002-39327
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Fluid Power Systems and Technology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 0-7918-3631-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

In this paper, the theoretical flow ripple of an external gear pump is studied for pumps of similar size using different numbers of teeth on the driving and driven gears. In this work, the flow ripple equation is derived based upon the flow of incompressible fluid across the changing boundaries of a control volume. From this method, it is shown that the instantaneous length of action within the gear mesh determines the instantaneous flow ripple. Using a numerical solution for the instantaneous length of action, different pump designs are compared. In summary, the results of this study show that it may be advantageous to design an external gear pump with a large number of teeth on the driving gear and a fewer number of teeth on the driven gear. This design configuration will tend to reduce both the physical pump size (without reducing the volumetric displacement of the pump) and the amplitude of the flow pulsation, while increasing the natural harmonic frequencies of the machine.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In