0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Optimal Design for Multichip Module Disks With an Unconfined Round-Jet Impingement

[+] Author Affiliations
C. J. Fang, M. C. Wu, C. H. Peng, Y. C. Lee, Y. H. Hung

National Tsing Hua University

Paper No. IMECE2005-81066, pp. 517-524; 8 pages
doi:10.1115/IMECE2005-81066
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4217-7 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

An effective method for performing the thermal optimization of stationary and rotating MCM disks with an unconfined round-jet impingement under space limitation constraint has been successfully developed. The design variables of stationary and rotating MCM disks with an unconfined round-jet impingement include: the ratio of jet separation distance to nozzle diameter (H/d), steady-state Grashof number (Grs ), jet Reynolds number (Rej ), rotational Reynolds number (Rer ). The total experimental cases for stationary and rotating MCM disks are statistically designed by the Central Composite Design (CCD) method. In addition, a sensitivity analysis, the so-called ANOVA, for the design factors has been performed. In the stationary MCM disk with an unconfined round-jet impingement, the contribution percentage of jet Reynolds number on the thermal performance is 95.86%. The effect of jet Reynolds numbers on chip temperature distribution is more significant than that of the H/d ratio and steady-state Grashof number. In rotating MCM disk with an unconfined round-jet impingement, the effect of jet Reynolds number, which has the contribution percentage of 91.81%, dominates the thermal performance. Furthermore, the comparisons between the predictions by using the quadratic Response Surface Methodology (RSM) and the experimental data are made. The maximum deviations for transient stagnation Nusselt number and transient average Nusselt number for the cases of stationary MCM disk are 10.05% and 11.82%, respectively; and 9.41% and 12.44% for the cases of rotating MCM disk, respectively. Finally, with the Sequential Quadratic Programming (SQP) technique, a series of thermal optimal designs under space limitation constraint H/d≤12 has been efficiently performed. Comparisons between the numerical optimization results and the experimental data are made with a satisfactory agreement.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In