Full Content is available to subscribers

Subscribe/Learn More  >

Large-Scale Molecular Dynamics Investigation of Nanoscale Laser Material Processing

[+] Author Affiliations
Xinwei Wang

University of Nebraska at Lincoln, Lincoln, NE

Hua Zhu

Zhejiang University, Hangzhou, Zhejiang, P. R. China

Paper No. HT2003-47003, pp. 1-11; 11 pages
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 3
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3695-9 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME


In this work, large-scale molecular dynamics simulation is conducted to explore nanoscale manufacturing with laser-assisted scanning tunneling microscope. Employing a super parallel computer, more than 100 million atoms are modeled to provide substantial details about how the localized thermal and mechanical perturbations result in surface nanostructures. It is found that thermal equilibrium cannot be established due to the small number of atoms. Extremely localized stress accumulation beneath the sample surface results in an explosion of the melted/vaporized material, leaving a nanoscale hole on the sample surface. Normal and shear stress development is observed. Stress propagation in space is strongly influenced by the anisotropic nature of the crystal. The high pressure in the melted/vaporized region pushes the melt adjacent to the solid to move, thereby forming a protrusion at the edge of the hole. More importantly, visible structural destruction is observed in the region close to the bottom of the sample. These destructions are along the direction of 45 degrees with respect to the axial direction, and are attributed to the strong tensile stress. Atomic dislocation is observed in the destructed regions.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In