Full Content is available to subscribers

Subscribe/Learn More  >

Hybrid Simulation Method for PWB Level Drop Tests

[+] Author Affiliations
Jiansen Zhu, Juscelino Okura, Santosh Shetty

Nokia Research Center

Esa Hussa


Paper No. IMECE2005-81825, pp. 99-105; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4217-7 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


PWB level drop tests are widely used as a standard test method to evaluate the reliability of PWB and packages under drop conditions (JEDEC Standard JESD22-B104-A). The drop height and test setup need be adjusted in order to achieve the requirements of a peak shock of 1500g and an impulse duration of 0.5 ms. Generally, the ground need be covered with a thin layer of rubber pad to absorb some of the impact energy. However, this rubber pad will bring challenges for modelling due to large deformation, nonlinear hyperelasticity, and contact. And sometimes, it may also cause the convergence problem. Therefore, a hybrid drop simulation method was developed. This hybrid method can not only circumvent the difficulties mentioned, but also increase the efficiency and reduce the CPU time of PWB drop simulation. When simulating a PWB board level drop test, generally, not only the PWB and the components assembled on it need be modelled, but also the drop vehicle, rubber pad, and ground should be included in the model. For the hybrid drop simulation, however, only part of drop vehicle need be modeled and there is no need to model the ground and the contact between the ground and the drop vehicle. Then an acceleration time curve measured from drop test is applied to the hybrid model so that the responses of the model will mimic the real drop situation. In this way, not only the simulation time is reduced due to smaller model sizes, but also can some difficulties related to large deformation, contact, and nonlinear material properties be avoided. Finally, a comparison of a bare PWB and a populated PWB drop cases was used to validate this hybrid drop simulation method. A reasonable correlation was achieved.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In