0

Full Content is available to subscribers

Subscribe/Learn More  >

Run-Time Three-Dimensional Blend-Path Generation for Cobot Constraint Surfaces

[+] Author Affiliations
Eric L. Faulring, J. Edward Colgate

Northwestern University, Evanston, IL

Paper No. IMECE2002-33837, pp. 875-882; 8 pages
doi:10.1115/IMECE2002-33837
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

During human-cobot interaction, transitions often occur between free mode operation and constraint surface following. This paper considers the following typical scenario: an operator of a three-dimensional (e.g. x-y-z or x-y-θ) cobot commands a “join” from free mode to a one-dimensional constraint path. To ensure that this transition is smooth and responsive, a “blend path” is computed that joins the cobot’s initial location to a location on the constraint path. The blend path must match tangency and curvature at each end, and must also exhibit continuous curvature. A novel “triple-clothoid” algorithm is developed that meets these requirements. In addition, we demonstrate that the triple-clothoid is particularly amenable to x-y-θ systems via implementation on a planar cobot.

Copyright © 2002 by ASME
Topics: Algorithms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In