Full Content is available to subscribers

Subscribe/Learn More  >

A New Hysteresis Model for Piezoelectric Actuators With Application to Precision Trajectory Control

[+] Author Affiliations
Saeid Bashash, Nader Jalili

Clemson University

Paper No. IMECE2005-81602, pp. 1899-1906; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Piezoelectric actuators with their sub-nanometer resolution and fast frequency response are becoming increasingly important in today’s micro-and nano-positioning technology. Along this line, this paper undertakes the development of a nonlinear modeling, system identification and control framework for piezoelectric actuators used in such positioning systems. More specifically, a general nonlinear modeling framework for a single piezoelectric actuator combined with a novel method for describing its hysteretic nonlinearity is proposed. For the actuator generated force, a polynomial form of the nonlinearity is assumed, and the time-varying history-dependent parameters of this polynomial are identified through the observed hysteretic characteristics of the actuator. Experimental results demonstrates the validity of the proposed the modeling and identification framework for an in-house high resolution piezoelectric-based stager with capacitive position sensor. Utilizing Lyapunov method and the sliding mode control strategy, the control force acting on the actuator is then designed such that the high frequency tracking control and the asymptotic stability of the system are attained. Simulation results indicate that controller suppresses the high frequency tracking error significantly, noticeably improving the tracking performance.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In