Full Content is available to subscribers

Subscribe/Learn More  >

Braking Impact of Normal Dither Signals

[+] Author Affiliations
Jeff Badertscher, Kenneth A. Cunefare

Georgia Institute of Technology

Paper No. IMECE2005-81290, pp. 1875-1882; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Dither control is a method of introducing high frequency control efforts into a system to suppress a lower frequency disturbance. One application of dither control is the suppression of automotive brake squeal. Brake squeal is a problem that has plagued the automotive industry for years. Placing a piezoceramic stack actuator in the piston of a floating caliper brake creates an experimental normal dither system. Many theoretical models indicate a reduction in the braking torque due to the normal dither signal. Using a Hertzian contact stiffness model the loss in friction is due to lowering the average normal force. There are also theories that the dither signal eliminates the ‘stick-slip’ oscillation causing an effective decrease in the friction force. Yet another theory indicates that the effective contact area is reduced, lowering the mean coefficient of friction. A particular approach considering a single degree of freedom friction oscillator predicts a maximum friction reduction of 10%, occurring at the primary resonance of the system. This paper will concentrate on validating this claim by experimentally determining braking torque reduction for a variety of dither control signals. Several dither control frequencies were chosen at system resonances, while others were chosen at frequencies most likely to provide control of the system. These frequencies were chosen based on previous squeal suppression research. The results indicate that dither control frequencies at system resonances have a greater impact on the braking system’s performance. In general, dither control reduces braking torque by no more than 2%.

Copyright © 2005 by ASME
Topics: Braking , Signals



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In