0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model

[+] Author Affiliations
Jay T. Pukrushpan, Huei Peng, Anna G. Stefanopoulou

University of Michigan, Ann Arbor, MI

Paper No. IMECE2002-32051, pp. 637-648; 12 pages
doi:10.1115/IMECE2002-32051
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Fuel cell stack systems are under intensive development by several manufacturers since they complement heat engines and reduce the ubiquitous dependence on fossil fuels and thus have significant environmental and national security implications. To compete with ICE engines, however, fuel cell system must operate and function at least as well as conventional engines. Transient behavior is on of the key requirements for the success of fuel cell vehicles. The fuel cell system power response depends on the air and hydrogen feed, flow and pressure regulation, and heat and water management. During transient, the fuel cell stack control system is required to maintain optimal temperature, membrane hydration, and partial pressure of the reactants across the membrane in order to avoid degradation of the stack voltage, and thus, efficiency reduction. In this paper, we developed a fuel cell system dynamic model suitable for control study. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the manifold filling dynamics (both anode and cathode), and consequently, the time-evolving reactant partial pressures, and membrane humidity. The effects of varying oxygen concentration and membrane humidity on the fuel cell voltage were included. Simulation results are presented to demonstrate the model capability.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In