Full Content is available to subscribers

Subscribe/Learn More  >

Intelligent Sensor Modeling and Data Fusion via Neural Network and Maximum Likelihood Estimation

[+] Author Affiliations
Manish Kumar, Devendra P. Garg

Duke University

Randy A. Zachery

Army Research Office

Paper No. IMECE2005-80972, pp. 1759-1768; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The major thrust of this paper is to develop a sensor model based on a probabilistic approach that could accurately provide information about individual sensor’s uncertainties and limitations. The sensor model aims to provide a most informative likelihood function that can be used to obtain a statistical and probabilistic estimate of uncertainties and errors due to some environmental parameters or parameters of any feature extraction algorithm used in estimation based on sensor’s outputs. This paper makes use of a neural network that has been trained with the help of a novel technique that obtains training signal from a maximum likelihood estimator. The proposed technique was applied to model stereo-vision sensors and Infra-Red (IR) proximity sensor, and information from these sensors were fused in a Bayesian framework to obtain a three-dimensional occupancy profile of objects in robotic workspace. The capability of the proposed technique in accurately obtaining three-dimensional occupancy profile and efficiently removing individual sensor uncertainties was demonstrated and validated via experiments carried out in the Robotics and Manufacturing Automation (RAMA) Laboratory at Duke University.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In