0

Full Content is available to subscribers

Subscribe/Learn More  >

Mass Air Flow Sensor Diagnostics for Adaptive Fueling Control of Internal Combustion Engines

[+] Author Affiliations
Patrick J. Buehler, Matthew A. Franchek

Purdue University, West Lafayette, IN

Imad Makki

Ford Motor Company, Dearborn, MI

Paper No. IMECE2002-32023, pp. 585-593; 9 pages
doi:10.1115/IMECE2002-32023
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Presented in this paper is an information synthesis (IS) approach for the mass air flow (MAF) sensor diagnosis on internal combustion engines. An information synthesis solution is attractive for diagnostics since the algorithm automatically calibrates itself, reduces the number of false detections and compresses a large amount of engine health information into the model coefficients. There are three primary parts to information synthesis diagnostics. First, an IS model is used to predict the MAF sensor output based on the engine operating condition. The inputs to this IS model include the throttle position sensor (TPS) and the engine speed sensor information. The second part concerns an online adaptation process that is used to reduce the errors between the IS model output and the actual MAF sensor output. Finally the adapted model coefficients are used to diagnose the sensor as well as identify the source for changes in the sensor characteristics. This proposed solution is experimentally tested and validated on a Ford 4.6 L V-8 fuel injected engine. The specific MAF sensor faults to be identified include sensor bias and a leak in the intake manifold.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In