Full Content is available to subscribers

Subscribe/Learn More  >

A Model Accuracy and Validation Algorithm

[+] Author Affiliations
Polat Sendur, Jeffrey L. Stein, Huei Peng, Loucas S. Louca

University of Michigan, Ann Arbor, MI

Paper No. IMECE2002-39580, pp. 573-583; 11 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Dynamic models of physical systems with physically meaningful states and parameters have become increasingly important, for design, control and even procurement decisions. The successful use of models in these contexts requires that the models be of sufficient quality. However, while algorithms have been developed to help formulate and integrate physical system models, as well as to generate minimum complexity physical system models, algorithms to assess the “quality” of dynamic system models have not been produced. This is true even if the attributes of model are limited to accuracy and validity. The objective of this paper is to introduce a new methodology that systematically quantifies the accuracy of a predicted system response and determines the validity of the physical system model used to predict the system response. The accuracy and validity of the model are evaluated using statistical properties of measured system response. The new algorithm is called Accuracy & Validation Algorithm for Simulation (AVASIM), and is a time-domain perspective comparing the model’s time trajectories at user-defined points of interest as well as over the entire simulation horizon. To illustrate AVASIM, the quality of a handling model of a DaimlerChrysler Grand Cherokee is compared to the measurements obtained from that vehicle subjected to known steering inputs. Results demonstrate that the accuracy and validity of the Grand Cherokee model can be systematically assessed using the proposed methodology, and, thus, AVASIM appears to be a powerful tool for assessing the quality of system models.

Copyright © 2002 by ASME
Topics: Algorithms



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In