0

Full Content is available to subscribers

Subscribe/Learn More  >

Online Terrain Classification for Mobile Robots

[+] Author Affiliations
Edmond M. DuPont, Rodney G. Roberts, Carl A. Moore, Emmanual G. Collins

FAMU/FSU College of Engineering

Majura F. Selekwa

North Dakota State University

Paper No. IMECE2005-81659, pp. 1643-1648; 6 pages
doi:10.1115/IMECE2005-81659
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Today’s autonomous vehicles operate in an increasingly general set of circumstances. In particular, unmanned ground vehicles (UGV’s) must be able to travel on whatever terrain the mission offers, including sand, mud, or even snow. These terrains can affect the performance and controllability of the vehicle. Like a human driver who feels his vehicle’s response to the terrain and takes appropriate steps to compensate, a UGV that can autonomously perceive its terrain can also make necessary changes to its control strategy. This article focuses on the development and application of a terrain detection algorithm based on terrain induced vehicle vibration. The dominant vibration frequencies are extracted and used by a probabilistic neural network to identify the terrain. Experimental results based on iRobot’s ATRV Jr (Fig. 1) demonstrate that the algorithm is able to identify with high accuracy multi-differentiated terrains broadly classified as sand, grass, asphalt, and gravel.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In