0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of a Distributed Reconfigurable Controller Architecture for Robotic Applications

[+] Author Affiliations
Rodney Atta-Konadu, Chris Zhang

University of Saskatchewan

Sherman Y. T. Lang, Peter Orban

National Research Council of Canada

Paper No. IMECE2005-81619, pp. 1627-1633; 7 pages
doi:10.1115/IMECE2005-81619
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME and National Research Council of Canada

abstract

Recent research in controller architecture has had some focus on reconfigurability and associated concepts such as modularity and openness. These paradigms advocate non-proprietary components such as commercial off-the-shelves (COTS) with standard interconnection interfaces. The tradeoffs of such a controller architecture are performance challenges such as network-induced delays and synchronization problems, especially where non-real time entities such as Ethernet are involved. In our quest to address some of these challenges we have developed a modular control architecture for machine and robotic control as a test platform. The advantage of this architecture is cost-effectiveness and openness, achieved through the use of COTS components. Each machine axis is controlled by a real-time Java micro-controller and all the controllers communicate through a switched-Ethernet communication network. The architecture is designed to support reconfiguration of both hardware and software resources by the use of modularity and service-discovery protocols in the software and hardware design. Therefore devices such as axes and sensors may be reorganized, removed or added easily. Our research presents performance results and applications typical of industrial or real life for our control architecture. The performance criteria analyzed include network delays, synchronization resolutions and error analyses.

Copyright © 2005 by ASME and National Research Council of Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In