Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Vibration Control of a Two-Degree of Freedom, State-Switched Absorber System

[+] Author Affiliations
Mark H. Holdhusen, Kenneth A. Cunefare

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2002-33555, pp. 421-427; 7 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


A State-Switched Absorber (SSA) is a device capable of instantaneously changing its stiffness, thus it can switch between resonance frequencies, increasing its effective bandwidth as compared to classical tuned vibration absorbers for vibration control. Previous theoretical simulations show that for a system subjected to a multi-harmonic disturbance, using an appropriate logic for switching states, the SSA reduces vibration more effectively than classical tuned vibration absorbers (TVA). This paper considers the experimental performance of the SSA for vibration suppression of an elastically mounted lumped mass base. State switching is achieved using magneto-rheological fluid to connect or disconnect a coil spring in parallel with other coil springs. The stiffness state is controlled by applying or removing a magnetic field across of the MR fluid. Experiments were performed over a range of forcing and tuning frequencies. The SSA system, optimally tuned, outperformed the optimal classical TVA system for all combinations of forcing frequencies.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In