Full Content is available to subscribers

Subscribe/Learn More  >

Measures for Wheel Slippage and Sinkage Detection in Rough-Terrain Mobile Robots

[+] Author Affiliations
Giulio Reina

University of Lecce

Lauro Ojeda, Johann Borenstein

University of Michigan

Annalisa Milella

Politecnico of Bari

Paper No. IMECE2005-79711, pp. 1379-1385; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Mobile robots are increasingly being used in high-risk, rough terrain situations, such as planetary exploration and military applications. Current control and localization algorithms are not well suited to rough terrain, since they generally do not consider the physical characteristics of the vehicle and of its environment. Poor attention has been devoted to the study of the dynamic ill-effects occurring at the wheel-terrain interface, such as slip and sinkage. These effects compromise odometry accuracy and traction performances leading to danger of entrapment with consequent mission failure. This paper describes methods for wheel slippage and sinkage detection aiming at improving vehicle mobility on highly challenging terrain. Novel measures for wheel slip detection are presented based on observing different sensor modalities implemented onboard and defining deterministic conditions for vehicle slippage. A vision-based algorithm for wheel sinkage estimation is also discussed based on edge detection strategy. Experimental results, obtained by a Mars rover-type robot operating in a rough-terrain environment, are presented. It is shown that these techniques are effective in detecting the dynamic effects due to wheel-terrain interaction and can lead to an efficient understanding of the vehicle physical behavior.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In