0

Full Content is available to subscribers

Subscribe/Learn More  >

Acquisition of High Precision Images for Non-Contact Atomic Force Microscopy via Direct Identification of Sample Height

[+] Author Affiliations
H. N. Pishkenari, A. Meghdari

Sharif University of Technology

Nader Jalili

Clemson University

Paper No. IMECE2005-81627, pp. 1335-1342; 8 pages
doi:10.1115/IMECE2005-81627
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Atomic force microscopes (AFM) can image and manipulate sample properties at the atomic scale. The non-contact mode of AFM offers unique advantages over other contemporary scanning probe techniques, especially when utilized for reliable measurements of soft samples (e.g., biological species). The distance between cantilever tip and sample surface is a time varying parameter even for a fixed sample height, and hence, difficult to identify. A remedy to this problem is to directly identify the sample height in order to generate high precision, atomic-resolution images. For this, the microcantilever is modeled by a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Since in most practical applications only the microcantilever deflection is accessible, this measurement is utilized to identify the sample height in each point. Using the proposed approach for identification of the sample height, the scanning speed can be increased significantly. Furthermore, for taking atomic-scale images of atomically flat samples, there is no need to use the feedback loop to achieve setpoint amplitude. Simulation results are provided to demonstrate the effectiveness of the approach and suggest the most suitable technique for the sample height identification.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In