0

Full Content is available to subscribers

Subscribe/Learn More  >

Intelligent System Identification Using Neural Networks and Genetic Algorithms of an Ultrasonic Positioning System

[+] Author Affiliations
Nishant Unnikrishnan, Ajay Mahajan

Southern Illinois University at Carbondale, Carbondale, IL

Paper No. IMECE2002-33426, pp. 193-199; 7 pages
doi:10.1115/IMECE2002-33426
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-3629-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

This paper presents an intelligent system identification methodology for the identification of a realistic model of an ultrasonic position estimation system that uses the difference in the time of arrivals of waves from a transmitter to various receivers. Even though a linearized formulation for the 3D system exists and is currently being used to estimate the position of the transmitter, its accuracy can still be improved further. A neural network approach is developed to train the system based on training sets obtained from the actual system, and it is proposed to use the final trained system to estimate the 3D position in real time. The weights of the neural network are obtained from an innovative procedure using genetic algorithms. Results for a simplified 1D system are presented as proof of concept. The performance of the identified 1D system using genetic algorithms is shown to be comparable to the one using the analytical model. Further, the identified system using genetic algorithms is also shown to be superior to the one using the traditional back propagation method for finding the weights for the neural networks. This work has significant applications in the identification of complex non-linear systems.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In