Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of Natural Convection and Pool Boiling Heat Transfer via Ultrasonic Vibration

[+] Author Affiliations
Ho-Young Kim, Yi Gu Kim

Korea Institute of Science and Technology, Seoul, Korea

Byung Ha Kang

Kookmin University, Seoul, Korea

Paper No. HT2003-47131, pp. 295-302; 8 pages
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 2
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3694-0 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME


This work experimentally studies the fundamental mechanism by which the ultrasonic vibration enhances natural convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. Experimental results show that the effects of ultrasonic vibration on flow behavior are vastly different depending on the heat transfer regime and the amount of dissolved gas. In the natural convection and subcooled boiling regimes, behavior of cavitation bubbles strongly affects the degree of heat transfer enhancement. In saturated boiling, no cavitation occurs thus the reduced thermal bubble size at departure and acoustic streaming are major factors enhancing heat transfer rate. The highest enhancement ratio is obtained in natural convection regime where no bubbles are present without ultrasonic vibration.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In