Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Model of Planar Solid Oxide Fuel Cells for Both Steady State and Transient Performance Analysis

[+] Author Affiliations
Handa Xi, Jing Sun

University of Michigan

Paper No. IMECE2005-81327, pp. 1147-1156; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


With its high efficiency and low emissions, Solid Oxide Fuel Cell (SOFC) is a promising alternative solution for many applications including both stationary power plants and mobile Auxiliary Power Unit (APU) systems. In this paper, a dynamic model is developed for planar co-flow SOFCs for both transient and steady-state performance analysis. Finite volume method with user-defined grid is adopted to deal with the spatial distributions of current densities, pressures, temperatures and gas compositions in the SOFC. Simulations of both transient and steady state behaviors are performed to analyze the system performance. Fuel utilization, air excess ratio, air inlet temperature and current density are identified as critical operating parameters for steady-state performance in terms of cell efficiency, maximum temperature and temperature gradient in the Positive electrode-Electrolyte-Negative electrode (PEN) structure. Dynamic responses to step changes of fuel and air flow rates (two important control variables) and responses to the step change in load (the main disturbance) are analyzed to shed lights on feedback control design.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In