0

Full Content is available to subscribers

Subscribe/Learn More  >

Projection Network for Unsupervised Pattern Classification

[+] Author Affiliations
C. James Li

Rensselaer Polytechnic Institute

C. Jansuwan

Kasetsart University

Paper No. IMECE2005-79603, pp. 881-889; 9 pages
doi:10.1115/IMECE2005-79603
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Projection network, being a non-linear dynamic system itself, has been shown to be superior to static classifiers such as neural networks in some applications where noise is significant. However it is a supervised classifier by nature. To extend its utility for unsupervised classification, this study proposes an unsupervised pattern classifier integrating a clustering algorithm based on DBSCAN and a dynamic classifier based on the projection network. The former is used to form clusters out of un-labeled data and eliminate outliers. Then, significant clusters in terms of size are identified. Subsequently, a system of projection networks is established to recognize all the significant clusters. The unsupervised classifier is tested with three well-known benchmark data sets (by ignoring data labels during training) including the Fisher’s iris data, the heart disease data and the credit screening data and the results are compared to those of supervised classifiers based on the projection network. The difference in performance is small. However, the ability of unsupervised classification comes at a price of a more complex classifier system and the need of data pre-conditioning. The former is because more than one cluster could be formed for a class and therefore more computational units are needed for the classifier, and the latter is because increased similarity of data after clustering increases the chances of numerical instability in the least square algorithm used to initialize the classifier.

Copyright © 2005 by ASME
Topics: Networks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In