Full Content is available to subscribers

Subscribe/Learn More  >

Virtual Lab for System Identification of an Electromechanical System

[+] Author Affiliations
Marcia K. O’Malley, David McStravick

Rice University

Paper No. IMECE2005-80034, pp. 705-712; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


A stand-alone virtual instrument (vi) has been developed to augment an experimental system identification laboratory exercise in a required mechanical engineering course on system dynamics. The Virtual Lab (VL) was used productively as a post-lab exercise in conjunction with an existing laboratory experiment for system identification. The VL can be formatted as a standalone file, which the students can download and access at their convenience, without the need for LabVIEW software. The virtual lab presented in this paper used the experimental identification of a transfer function for an xy recorder developed at Rose-Hulman Institute of Technology. In the original Rose-Hulman experiment, students view a video of the acquisition of frequency response data for an X-Y recorder. Then, students complete a detailed optimization procedure using Microsoft Excel in order to determine system parameters for two transfer function models. This paper describes using the Virtual Lab to extend the original lab exercise into an interactive mode. The students complete the Microsoft Excel part of the exercise, but then repeat the optimization using brute force via the LabVIEW based VL developed by the authors, rather than using the optimization toolbox in Excel. With the VL, students can see in real-time the effects of each unknown parameter on the frequency response plot, thus providing additional insight into the relationships between these parameters and the behavior of the electromechanical system. This feature is notably absent in the Microsoft Excel portion of the exercise. Although this exercise uses simple dynamic models, the combination of Excel and LabVIEW approaches provide an insightful introduction to experimental system identification. In this paper, details of the VL are presented, including the functionality of the VL and methodologies for disseminating the VL as a stand-alone piece of software. Finally, some assessment results for the original (Excel version) and VL methods of presenting the laboratory exercise are discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In