0

Full Content is available to subscribers

Subscribe/Learn More  >

The Construction of Nonlinear Normal Modes for Systems With Internal Resonance: Application to Rotating Beams

[+] Author Affiliations
Dongying Jiang, Christophe Pierre

University of Michigan, Ann Arbor, MI

Steven W. Shaw

Michigan State University, East Lansing, MI

Paper No. IMECE2002-32412, pp. 445-456; 12 pages
doi:10.1115/IMECE2002-32412
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Design Engineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-3628-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A numerical method for constructing nonlinear normal modes for systems with internal resonances is presented based on the invariant manifold approach. In order to parameterize the nonlinear normal modes, multiple pairs of system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant manifold. All the remaining degrees of freedom are constrained to these ‘seed’ variables, resulting in a system of nonlinear partial differential equations governing the constraint relationships, which must be solved numerically. The solution procedure uses a combination of finite difference schemes and Galerkin-based expansion approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the approach. An invariant manifold that captures two nonlinear normal modes is constructed, resulting in a reduced-order model that accurately captures the system dynamics. The methodology is then applied to a more large system, namely an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping modes. The accuracy of the nonlinear two-mode reduced-order model is verified by time-domain simulations.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In