0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Effects on Coexistence Phenomenon in Parametric Excitation

[+] Author Affiliations
Leslie Ng, Richard Rand

Cornell University, Ithaca, NY

Paper No. IMECE2002-32406, pp. 425-433; 9 pages
doi:10.1115/IMECE2002-32406
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Design Engineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-3628-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

We investigate the effect of nonlinearites on a parametrically excited ordinary differential equation whose linearization exhibits the phenomena of coexistence. The differential equation studied governs the stability mode of vibration in an unforced conservative two degree of freedom system used to model the free vibrations of a thin elastica. Using perturbation methods, we show that at parameter values corresponding to coexistence, nonlinear terms can cause the origin to become nonlinearly unstable, even though linear stability analysis predicts the origin to be stable. We also investigate the bifurcations associated with this instability.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In