Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of the Braking Performance of Electromechanical and Hydraulic ABS Systems

[+] Author Affiliations
Okwuchi C. Emereole, Malcolm C. Good

University of Melbourne

Paper No. IMECE2005-79368, pp. 319-328; 10 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


The benefits potentially available by replacing conventional hydraulic ABS brake systems with electromechanical brake-by-wire systems (EMB) are extensive and have been well documented. They include increased functionality, packaging and design flexibility, reduced assembly costs, and elimination of hydraulic fluids [1, 2]. A characteristic of most ABS systems is a sequence of discontinuous build-hold-dump pressure cycles, whereas EMB systems will allow continuous control of brake torque. In this paper, the antilock performance of an EMB using a continuous brake torque control strategy is compared against that of a current state-of-the-art hydraulic ABS system. The comparison was performed using a half-car model developed in the Simulink environment. The hydraulic system characteristics were identified from ABS test data on a recent production vehicle and the simulated ABS logic was also validated using this data. A simple model of the dynamics of an EMB actuator with clamp force control was developed, and validated against limited test results from a prototype EMB system. A continuous gain-scheduled PID wheel slip controller was developed for the EMB to replace the conventional ABS logic. Brake system performances were compared using an Antilock Performance Index (API). The results of the comparison indicate that an EMB with continuous slip control has the potential to perform better than a conventional ABS system, provided a suitably robust wheel slip controller and algorithm for determining the appropriate target slip are available.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In