Full Content is available to subscribers

Subscribe/Learn More  >

Data Driven Feedforward Transient Fueling Controller Identification for Spark Ignition Engines

[+] Author Affiliations
Matthew A. Franchek

University of Houston

Jackie Mohrfeld, Andy Osburn

Purdue University

Paper No. IMECE2005-79031, pp. 289-296; 8 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Dynamic Systems and Control, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 0-7918-4216-9 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Presented in this paper is a feedforward fueling controller identification methodology for the transient fueling control of spark ignition (SI) engines. The proposed transient feedforward controller is identified and executed in the crank angle domain, and operates in tandem with a steady state fueling controller. The hypothesis is that the feedforward fueling control of SI engines can be separated into steady state and transient phenomena, and that the majority of the nonlinear behavior associated with engine fueling can be captured with nonlinear steady state compensation. The proposed transient controller identification process is built from standard nonparametric identification techniques using spectral density functions where crank angle serves as the independent variable. Two separate system identification problems are solved to identify the air path dynamics and the fuel path dynamics. The transient feedforward controller is then calculated as the ratio of the air path-over-the fuel path dynamics so that the fuel path dynamics match the air path dynamics. Consequently fueling is coordinated with the fresh air charge during transient conditions. It will be shown that a linear transient feedforward-fueling controller operating in tandem with a nonlinear steady state fueling controller can achieve air-fuel ratio (AFR) regulation comparable to a production controller without the extensive controller calibration process. The engine used in this investigation is a 1999 Ford 4.6L V-8 fuel injected engine.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In