Full Content is available to subscribers

Subscribe/Learn More  >

Automated Stability Analysis of a Vehicle in Combined Pitch and Roll

[+] Author Affiliations
James K. Sprague, Shyi-Ping Liu

Exponent Failure Analysis Associates, Farmington Hills, MI

Paper No. IMECE2002-33184, pp. 59-73; 15 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Design Engineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-3628-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


This paper presents a rigid body modeling approach using ADAMS™ for an overturning stability analysis of a vehicle stopped at an arbitrary heading angle on a steep grade. The vehicle is modeled as a six-degree-of-freedom rigid body with multiple contact forces acting on the ground. A gravity vector bounded by sets of spherical coordinates is applied to the vehicle to represent the physics of a vehicle stopped on a grade with any arbitrary combination of pitch and roll angles. A design of experiments study is performed to locate the overturning stability boundaries within given levels of design parameters. Results are output using two effective graphical means of depicting the stability regions and magnitude of contact forces.

Copyright © 2002 by ASME
Topics: Stability , Vehicles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In