Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Study of the Transient Shock Wave Propagation During Laser Ablation

[+] Author Affiliations
Zhaoyan Zhang, George Gogos

University of Nebraska at Lincoln, Lincoln, NE

Paper No. HT2003-47407, pp. 533-539; 7 pages
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 1
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3693-2 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME


Laser ablation consists of three coupled processes: i) heat conduction within the solid, ii) flow through a discontinuity layer (evaporation wave) attached to the solid surface, and iii) shock wave expansion of the laser induced vapor. In this paper; a one-dimensional solution for all three coupled processes is presented. The heat conduction and the evaporation wave are solved numerically. The shock wave expansion of the laser induced vapor, how ever, is solved analytically for the first time Analytical solutions for the classic Riemann problem have been employed to solve the transient propagation of the strong shock wave. This model provides a sound theoretical basis for the analysis of the laser ablation process. The effects of the laser intensity, back temperature and back pressure are analyzed. The temperature pressure; density and velocity of the laser induced vapor are calculated and the results are discussed.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In