Full Content is available to subscribers

Subscribe/Learn More  >

Order Reduction of Nonlinear Systems Subjected to an External Periodic Excitation

[+] Author Affiliations
Sangram Redkar, S. C. Sinha

Auburn University

Paper No. IMECE2005-82354, pp. 1169-1175; 7 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


In this work, the basic problem of order reduction nonlinear systems subjected to an external periodic excitation is considered. This problem deserves attention because the modes that interact (linearly or nonlinearly) with the external excitation dominate the response. A linear approach like the Guyan reduction does not always guarantee accurate results, particularly when nonlinear interactions are strong. In order to overcome limitations of the linear approach, a nonlinear order reduction methodology through a generalization of the invariant manifold technique is proposed. Traditionally, the invariant manifold techniques for unforced problems are extended to the forced problems by ‘augmenting’ the state space, i.e., forcing is treated as an additional degree of freedom and an invariant manifold is constructed. However, in the approach suggested here a nonlinear time-dependent relationship between the dominant and the non-dominant states is assumed and the dimension of the state space remains the same. This methodology not only yields accurate reduced order models but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. Following this approach, various ‘reducibility conditions’ are obtained that show interactions among the eigenvalues, the nonlinearities and the external excitation. One can also recover all ‘resonance conditions’ commonly obtained via perturbation or averaging techniques. These methodologies are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control of large-scale externally excited nonlinear systems.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In