0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Contact Mechanics in the Prediction of the Effective Thermal Conductivity of Spheroid Packed Beds

[+] Author Affiliations
G. Buonanno, A. Carotenuto, G. Giovinco, L. Vanoli

Università di Cassino, Cassino, Italy

Paper No. HT2003-47351, pp. 441-448; 8 pages
doi:10.1115/HT2003-47351
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 1
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3693-2 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

Thermal contact conductance is an important parameter in a wide range of thermal phenomena, and consequently a large number of experimental, numerical and statistical investigations have been carried out in literature. In the present paper an analysis of thermal contact resistance is carried out to predict heat transfer between spherical rough surfaces in contact, by means of a statistical approach. The micro-geometry of the surface is described through a probabilistic model based on the peak height variability and invariant asperity curvature radius. The numerical model has been applied to evaluate the effective thermal conductivity of packed beds of steel spheroids and validated through the comparison with the experimental data obtained by means of an apparatus designed and build up for this purpose.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In