0

Full Content is available to subscribers

Subscribe/Learn More  >

The Newmark Integration Method for Simulation of Multibody Systems: Analytical Considerations

[+] Author Affiliations
B. Gavrea, F. A. Potra

University of Maryland-Baltimore County

D. Negrut

Argonne National Laboratory

Paper No. IMECE2005-81770, pp. 1079-1092; 14 pages
doi:10.1115/IMECE2005-81770
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

When simulating the behavior of a mechanical system, the time evolution of the generalized coordinates used to represent the configuration of the model is computed as the solution of a combined set of ordinary differential and algebraic equations (DAEs). There are several ways in which the numerical solution of the resulting index 3 DAE problem can be approached. The most well-known and time-honored algorithms are the direct discretization approach, and the state-space reduction approach, respectively. In the latter, the problem is reduced to a minimal set of potentially new generalized coordinates in which the problem assumes the form of a pure second order set of Ordinary Differential Equations (ODE). This approach is very accurate, but computationally intensive, especially when dealing with large mechanical systems that contain flexible parts, stiff components, and contact/impact. The direct discretization approach is less but nevertheless sufficiently accurate yet significantly faster, and it is the approach that is considered in this paper. In the context of direct discretization methods, approaches based on the Backward Differentiation Formulas (BDF) have been the traditional choice for more than 20 years. This paper proposes a new approach in which BDF methods are replaced by the Newmark formulas. Local convergence analysis is carried out for the proposed method, and step-size control, error estimation, and nonlinear system solution related issues are discussed in detail. A series of two simple models are used to validate the method. The global convergence analysis and a computational-efficiency comparison with the most widely used numerical integrator available in the MSC.ADAMS commercial simulation package are forthcoming. The new method has been implemented successfully for industrial strength Dynamic Analysis simulations in the 2005 version of the MSC.ADAMS software and used very effectively for the simulation of systems with more than 15,000 differential-algebraic equations.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In