Full Content is available to subscribers

Subscribe/Learn More  >

Viscoelastic Wave Analysis of Hopkinson Split Bar System

[+] Author Affiliations
Erno Keskinen

University of Karlsruhe

Taina Vuoristo, Veli-Tapani Kuokkala, Matti Martikainen

Tampere University of Technology

Paper No. IMECE2005-81241, pp. 1031-1039; 9 pages
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME


Axially elastic rods are basic machine elements in hydraulic hammers, pilers and percussive drills. The problem to analyze the motion history of such mechanisms is a very complex one, because the rods are simultaneously in large amplitude axial motion superimposed with a small amplitude elastic wave motion. The wave motion experiences division to reflected and transmitted components at each rod-rod interface depending on the current boundary stiffness. The wave motion in each rod can be computed by finite elements or alternatively in space of semidefinite eigenfunctions. The feasibility of these methods in solving wave propagation problems in multi-rod systems with nonlinearly behaving rod-rod interfaces has been investigated and evaluated. The object of the case study is a classical Hopkinson split bar apparatus used in experimental analysis of material response to shock pulses.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In