0

Full Content is available to subscribers

Subscribe/Learn More  >

Confined Jet Impingement Thermal Management Using Liquid Ammonia as the Working Fluid

[+] Author Affiliations
Muhammad M. Rahman, Padmaja Dontaraju

University of South Florida, Tampa, FL

Rengasamy Ponnappan

Air Force Research Laboratory, Wright Patterson AFB, OH

Paper No. IMECE2002-33033, pp. 573-582; 10 pages
doi:10.1115/IMECE2002-33033
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-3626-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

The focus of the study was the conjugate heat transfer during impingement of a confined liquid jet. Two numerical models of a heat transfer process with heat transmission through a fluid-solid interface have been developed. In the first case only the fluid region has been considered while in the second case the solid region has been modeled along with the fluid region as a conjugate problem. The inlet nozzle Reynolds number has been kept at values where laminar flow can be assumed in all cases. The solid-fluid interface temperature shows a strong dependence on several geometric, fluid flow, and heat transfer parameters. The Nusselt number increased with Reynolds number. For a given flow rate, a higher heat transfer coefficient was obtained with smaller slot width and lower impingement height. A higher heat transfer coefficient at the impingement location was seen at a smaller thickness, whereas a thicker plate provided a more uniform distribution of heat transfer coefficient. Compared to Mil-7808 and FC-77, ammonia provided much smaller solid-fluid interface temperature and higher heat transfer coefficient.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In