0

Full Content is available to subscribers

Subscribe/Learn More  >

Gibbs Systems Dynamics: A Simple But Powerful Tool for Process Analysis, Design and Optimization

[+] Author Affiliations
Pierre Neveu, Nathalie Mazet

CNRS-IMP, Perpignan, France

Paper No. IMECE2002-33355, pp. 477-483; 7 pages
doi:10.1115/IMECE2002-33355
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-3626-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Dynamic process modeling by the mean of Equivalent Gibbs systems is described here. It allows to model a large number of processes and only requires standard engineering knowledge. This method is issued from thermodynamics of irreversible processes, initiated by I. Prigogine, but applied here to process engineering. First, an Equivalent Gibbs System (EGS) is defined for each component involved in the process. In such system, mass, energy and entropy are linked through Gibbs equation and entropy production can easily be expressed according to fluxes and their related forces. Assuming linear phenomenological laws, phenomenological coefficients can be calculated from common engineering correlations, or evaluated from technical data if available. As an example, a conventional vapor compression chiller is simulated. Three control modes are analyzed on an exergy basis: on/off control with constant or floating condensing pressure, PID control with variable compressor speed.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In