0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Reliability Design and Optimization for Multilayer Composite Electronic Boards

[+] Author Affiliations
Amir Khalilollahi, Russell L. Warley, Oladipo Onipede

Pennsylvania State University at Erie

Paper No. IMECE2005-82560, pp. 845-851; 7 pages
doi:10.1115/IMECE2005-82560
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Boards made of composites are susceptible of structural failure or irreversible damage under thermally raised stresses. A thermal/structural finite element model is integrated in this study to enable the predictions of the temperature and stress distribution of vertically clamped parallel circuit boards that include series of symmetrically mounted heated electronic modules (chips). The board is modeled as a thin plate containing four heated flush rectangular areas that represent the electronic modules. The finite element model should be to able to accept the convection heat transfer on the board surface, heat generation in the modules, and directional conduction inside the board. A detailed 3-D CFD model is incorporated to predict the conjugate heat transfer coefficients that strongly affect the temperature distribution in the board and modules. Structural analyses are performed by a FE model that uses the heat transfer coefficients mentioned above, and structural elements capable of handling orthotropic material properties. The stress fields are obtained and studied for the models possessing two and there laminates with different fiber orientations, and inter-fiber angles. Appreciable differences in values of max stress intensity were observed as the fiber orientation and inter-fiber angle changed. The angular parameters in this study were guided by experimental design (DOE) concepts leading to a metamodel of the stress intensity in the board. The optimum design variables found by the equations of the metamodel.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In