0

Full Content is available to subscribers

Subscribe/Learn More  >

Function-Based Design of a Spacecraft Power System Diagnostics Testbed

[+] Author Affiliations
Ryan S. Hutcheson, Irem Y. Tumer

NASA Ames Research Center

Paper No. IMECE2005-81120, pp. 837-844; 8 pages
doi:10.1115/IMECE2005-81120
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Design Engineering, Parts A and B
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Design Engineering Division
  • ISBN: 0-7918-4215-0 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

NASA’s Ames Research center is currently designing a testbed to validate and compare potential Integrated System Health Management (ISHM) technologies. The proposed testbed represents a typical power system for a spacecraft and includes components such as a fuel cell, solar cells and redundant batteries. To fulfill design requirements, the testbed must be capable of hosting a wide variety of ISHM technologies including those developed by NASA as well as those developed in the aerospace industry abroad. An internal fault injection subsystem must be built into the system to provide a common interface for evaluating these different ISHM technologies. Additionally, to ensure robust operation of the testbed, the capability to detect and manage external faults must also be present. In order to develop a set of requirements for the internal fault injection subsystems as well as predict external faults, a comprehensive set of potential failures must be identified for all of the components of the testbed. To best aid the development of the testbed, these failures needed to be identified as early as the conceptual design phase, where little is known about the actual components that would comprise the finished system. This paper demonstrates the use a function-based failure mode identification method to identify the potential failures of the testbed during the conceptual design phase. Using this approach, designers can explore the potential failure modes at the functional design stage, before a form or solution has been determined. A function-failure database is used to associate the failures of components from previous design efforts to the testbed based on common functionality. The result is a list of potential failure modes and associated failure rates, which are used to improve the design of the testbed as well as provide a framework for the fault injection subsystem.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In