0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Model of Heat, Mass, and Charge Transfer as Well as Electrochemistry in the Cathode Catalyst Layer of a PEMFC

[+] Author Affiliations
Daniel B. Genevey, Michael R. von Spakovsky, Michael W. Ellis, Douglas J. Nelson, Benoît Olsommer, Frédéric Topin, Nathan Siegel

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2002-33322, pp. 393-406; 14 pages
doi:10.1115/IMECE2002-33322
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-3626-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A transient model of the cathode catalyst layer of a proton exchange membrane fuel cell is presented. The catalyst layer structure can be described as a superposition of the polymer membrane, the backing layer, and some additional platinum particles. The model, which incorporates some of the features of the pseudo-homogeneous models currently present in the literature, considers the kinetics of the electrochemical reaction taking place at the platinum surface, the proton transport through the polymer agglomerates, and the oxygen and water transport within the pores as well as the membrane material of the catalyst layer. Due to the lower porosity of this region and the higher liquid water content, the catalyst layer can be current limiting in the fuel cell. Furthermore, since the cost of the catalyst material is critical, it is important to have a model predicting the effective utilization of this catalyst layer as well as one, which gives insights into how it might be improved. Equations are presented for the mass conservation of reactants and products, the electrical and ionic currents, and the conservation of energy. A discussion of a number of the closure relations such as the Butler-Volmer equation employed is included as is a discussion of the initial and boundary conditions applied. The mathematical model is solved using a finite elements approach developed at I.U.S.T.I.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In