0

Full Content is available to subscribers

Subscribe/Learn More  >

A Decomposition Strategy Based on Thermoeconomic Isolation Applied to the Optimal Synthesis/Design and Operation of a Fuel Cell Based Total Energy System

[+] Author Affiliations
Nikolaos G. Georgopoulos, Michael R. von Spakovsky, J. Ricardo Muñoz

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2002-33320, pp. 379-391; 13 pages
doi:10.1115/IMECE2002-33320
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advanced Energy Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 0-7918-3626-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A decomposition methodology based on the concept of “thermoeconomic isolation” applied to the synthesis/design and operational optimization of a stationary cogeneration proton exchange membrane fuel cell (PEMFC) based total energy system (TES) for residential/commercial applications is the focus of this paper. A number of different configurations for the FC based TES were considered. The most promising set based on an energy integration analysis of candidate configurations was developed and detailed thermodynamic, kinetic, geometric, and economic models at both design and off-design were formulated and implemented. An original decomposition strategy called Iterative Local-Global Optimization (ILGO) developed in earlier work by two of the authors was then applied to the synthesis/design and operational optimization of the FC based TES. This decomposition strategy is the first to successfully closely approach the theoretical condition of “thermoeconomic isolation” when applied to highly complex, nonlinear systems. This contrasts with past attempts to approach this condition, all of which were applied to very simple systems under very special and restricted conditions such as those requiring linearity in the models and strictly local decision variables. This is a major advance in decomposition and has now been successfully applied to a number of highly complex, highly non-linear, and dynamic transportation and stationary systems. This paper presents the detailed results from one such application.

Copyright © 2002 by ASME
Topics: Design , Fuel cells

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In