0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Characteristics of Steady Electroosmotic Flows in Two-Dimensional Straight Microchannels

[+] Author Affiliations
Keisuke Horiuchi, Prashanta Dutta

Washington State University, Pullman, WA

Paper No. HT2003-47097, pp. 221-228; 8 pages
doi:10.1115/HT2003-47097
From:
  • ASME 2003 Heat Transfer Summer Conference
  • Heat Transfer: Volume 1
  • Las Vegas, Nevada, USA, July 21–23, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3693-2 | eISBN: 0-7918-3679-7
  • Copyright © 2003 by ASME

abstract

Analytical solutions for the temperature distributions, heat transfer coefficients and Nusselt numbers of steady electroosmotic flows are obtained for two-dimensional straight micro-channels. This analysis is based on infinitesimal electric double layer (EDL) in which flow velocity becomes “plug-like” uniform except very close to the wall. Both constant surface temperature and constant surface heat flux conditions are considered in this study. Separation of variables techniques are applied to obtain analytical solutions of temperature distributions from the energy equation in which Joule heating is a significant contributor due to the applied electric field. The thermal analysis considers interaction among inertial, diffusive and joule heating terms in order to obtain the thermally developing behavior of electroosmotic flows. Heat transfer characteristics are presented for low Reynolds number microflows where the viscous and electric field terms are very dominant. For the parameter range studied here (Re ≤ 0.7), the Nusselt number is independent of the thermal Peclet number, except in the thermally developing region. In both isothermal and constant surface heat flux boundary conditions, the Nusselt number becomes constant in the fully developed region for a uniform volumetric heat generation. Analytical results for no Joule heating cases are also compared with the classical heat transfer results, and in the thermally fully developed region an excellent agreement is obtained between them.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In